Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36899920

RESUMO

Background. The dual role of GCs has been observed in breast cancer; however, due to many concomitant factors, GR action in cancer biology is still ambiguous. In this study, we aimed to unravel the context-dependent action of GR in breast cancer. Methods. GR expression was characterized in multiple cohorts: (1) 24,256 breast cancer specimens on the RNA level, 220 samples on the protein level and correlated with clinicopathological data; (2) oestrogen receptor (ER)-positive and -negative cell lines were used to test for the presence of ER and ligand, and the effect of the GRß isoform following GRα and GRß overexpression on GR action, by in vitro functional assays. Results. We found that GR expression was higher in ER- breast cancer cells compared to ER+ ones, and GR-transactivated genes were implicated mainly in cell migration. Immunohistochemistry showed mostly cytoplasmic but heterogenous staining irrespective of ER status. GRα increased cell proliferation, viability, and the migration of ER- cells. GRß had a similar effect on breast cancer cell viability, proliferation, and migration. However, the GRß isoform had the opposite effect depending on the presence of ER: an increased dead cell ratio was found in ER+ breast cancer cells compared to ER- ones. Interestingly, GRα and GRß action did not depend on the presence of the ligand, suggesting the role of the "intrinsic", ligand-independent action of GR in breast cancer. Conclusions. Staining differences using different GR antibodies may be the reason behind controversial findings in the literature regarding the expression of GR protein and clinicopathological data. Therefore, caution in the interpretation of immunohistochemistry should be applied. By dissecting the effects of GRα and GRß, we found that the presence of the GR in the context of ER had a different effect on cancer cell behaviour, but independently of ligand availability. Additionally, GR-transactivated genes are mostly involved in cell migration, which raises GR's importance in disease progression.


Assuntos
Neoplasias da Mama , Glucocorticoides , Humanos , Feminino , Glucocorticoides/farmacologia , Ligantes , Isoformas de Proteínas
2.
Neurosci Lett ; 765: 136274, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34592370

RESUMO

Ample evidence indicates that in several mammalian species the pineal body contains neurons. In adult white albino rats neurons are not present in the pineal body; however, in perinatal rats many neurons were described. It was demonstrated that in adult mammalian species the pineal neurons contained some neuropeptides and neurotransmitters such as leu-enkephalin, met-enkephalin, substance-P, somatostatin and γ-aminobutiric acid. Oxytocin, vasopressin mRNAs and peptides were also demonstrated. No data are available on the chemical nature of the neurons in perinatal rats. In the present experiment we used immunohistochemistry to clarify this issue. After paraformaldehyde fixation frozen sections were prepared and stained for immunoreactivities of several neuropeptides and neurotransmitters. Dopamine ß-hydroxylase, neuropeptide-Y, vesicular acetylcholine transporter, vesicular glutamate transporter and calcitonin gene-related peptide antibodies were able to stain fibers. According to previous data these fibers may be sympathetic, parasympathetic or sensory. Vesicular glutamate transporter antibody may stain pinealocytes as well. Some cells were immunoreactive for substance-P, oxytocin, vasopressin, leu-enkefalin and glutamic acid decarboxylase. These immnoreactivities showed colocalization with neuron-specific nuclear protein immunoreactivity indicating that these cells were neurons. Calbindin was observed in oval and elongated cells resembling pinealocytes. Based on the results obtained in adult mammals, the pineal neurons may be analogue to retinal ganglion cells, or they may function as interneurons in the retino-pinealo-retinal neuronal circuit or peptidergic neurons may influence pinealocytes in a paracrine manner.


Assuntos
Neurônios/citologia , Neuropeptídeos/análise , Neurotransmissores/análise , Glândula Pineal/química , Glândula Pineal/citologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Neurônios/metabolismo , Glândula Pineal/metabolismo , Ratos
3.
J Neurosci ; 41(21): 4575-4595, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33837051

RESUMO

GABAergic neurons are key circuit elements in cortical networks. Despite growing evidence showing that inhibitory cells play a critical role in the lateral (LA) and basal (BA) amygdala functions, neither the number of GABAergic neurons nor the ratio of their distinct types has been determined in these amygdalar nuclei. Using unbiased stereology, we found that the ratio of GABAergic neurons in the BA (22%) is significantly higher than in the LA (16%) in both male and female mice. No difference was observed between the right and left hemispheres in either sex. In addition, we assessed the ratio of the major inhibitory cell types in both amygdalar nuclei. Using transgenic mice and a viral strategy for visualizing inhibitory cells combined with immunocytochemistry, we estimated that the following cell types together compose the vast majority of GABAergic cells in the LA and BA: axo-axonic cells (5.5%-6%), basket cells expressing parvalbumin (17%-20%) or cholecystokinin (7%-9%), dendrite-targeting inhibitory cells expressing somatostatin (10%-16%), NPY-containing neurogliaform cells (14%-15%), VIP and/or calretinin-expressing interneuron-selective interneurons (29%-38%), and GABAergic projection neurons expressing somatostatin and neuronal nitric oxide synthase (5.5%-8%). Our results show that these amygdalar nuclei contain all major GABAergic neuron types as found in other cortical regions. Furthermore, our data offer an essential reference for future studies aiming to reveal changes in GABAergic cell number and in inhibitory cell types typically observed under different pathologic conditions, and to model functioning amygdalar networks in health and disease.SIGNIFICANCE STATEMENT GABAergic cells in cortical structures, as in the lateral and basal nucleus of the amygdala, have a determinant role in controlling circuit operation. In this study, we provide the first estimate for the total number of inhibitory cells in these two amygdalar nuclei. In addition, our study is the first to define the ratio of the major GABAergic cell types present in these cortical networks. Taking into account that hyperexcitability in the amygdala, arising from the imbalance between excitation and inhibition typifies many altered brain functions, including anxiety, post-traumatic stress disorder, schizophrenia, and autism, uncovering the number and ratio of distinct amygdalar inhibitory cell types offers a solid base for comparing the changes in inhibition in pathologic brain states.


Assuntos
Complexo Nuclear Basolateral da Amígdala/citologia , Neurônios GABAérgicos/citologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos
4.
Neurosci Lett ; 744: 135517, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33246028

RESUMO

It is well established that the adult mammalian pineal body (PB), with the exception of rodents, contains nerve cell bodies. Based on our previous results we have proposed that there is a pinealo-to-retinal neuronal connection in adult hamsters and in prebubertal rats. By the time the animals reached puberty, labeled cells in the PB were not observed in rats. In the present experiment, we provide light and electron microscopic immunohistochemical evidence that the labeled cells in the PB of prepubertal rats are neurons. Pinealocytes cannot transport neurotropic viruses. Virus labeled cells do not show S-antigen immunoreactivity typical for pinealocytes of six-day-old rats. Electron microscopic investigation confirmed the neuronal nature of virus labeled cells. These neurons, similarly to that of hamsters, also establish pinealo-to-retinal connections in prepubertal rats.


Assuntos
Herpesvirus Suídeo 1/metabolismo , Glândula Pineal/química , Glândula Pineal/metabolismo , Neurônios Retinianos/química , Neurônios Retinianos/metabolismo , Maturidade Sexual/fisiologia , Animais , Animais Recém-Nascidos , Transporte Biológico/fisiologia , Imuno-Histoquímica , Masculino , Microscopia/métodos , Microscopia Eletrônica/métodos , Glândula Pineal/ultraestrutura , Ratos , Ratos Wistar , Neurônios Retinianos/ultraestrutura
5.
Neurosci Lett ; 665: 189-194, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29217260

RESUMO

It was accepted for a long time that in mammals there is only retinofugal neuronal connection between the eye and the pineal body (PB). In our previous paper we described that nerve cells were present in hamster PB and these neurons could establish a reverse connection with the retina through a transsynaptic pathway. In adult albino rats neuronal perikarya were not found. In this present experiment it was examined whether the lack of these nerve cells in the PB of adult rats is the result of an apoptotic phenomenon or the lack of migration during the fetal period. Green fluorescence protein expressing pseudorabies virus, spreading only in retrograde direction, was injected into the vitreous body of rats at various postnatal ages. Virus labeled cell bodies were not observed in the PB of adult rats; however, labeling with gradually decreasing number of cells was present in animals aged 3-6, 13-14, 20, 35 and 41 postnatal days. Injection of virus, spreading in anterograde direction (expressing red fluorescence protein), into the PB of young prepubertal animals resulted in labeling in the retina. This observation indicates that the pinealo-retinal connection in prepubertal period is active. Immunostaining revealed that some of the labeled neuronal perikarya showed activated caspase-3 (an apoptotic marker) immunoreactivity. Our results clearly show that the neurons migrate to the PB and later, during the prepubertal period, they disappear. Caspase-3 immnoreactivity indicates that these cells die off by apoptosis.


Assuntos
Herpesvirus Suídeo 1/patogenicidade , Retina/virologia , Neurônios Retinianos/virologia , Vias Visuais/virologia , Animais , Masculino , Glândula Pineal/virologia , Ratos Sprague-Dawley , Retina/metabolismo , Núcleo Supraquiasmático/virologia , Sinapses/fisiologia
6.
Mitochondrion ; 34: 115-126, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28288917

RESUMO

Cyclophilin D (cypD) modulates the properties of the permeability transition pore, a phenomenon implicated in the manifestation of many diseases including aging. Here, we examined the effects of partial or complete deletion of cypD on i) lifespan, ii) forebrain protein expression of 18 aging markers as well as regional expression of GFAP, mGluR1, and alpha-synuclein, and iii) behaviour of aged (>24month) male and female mice. Both male and female cypD heterozygous but not KO mice exhibited increased lifespans compared to WT littermates, associated with alterations in the protein expression of some markers, albeit without exhibiting changes in behaviour.


Assuntos
Envelhecimento/patologia , Ciclofilinas/metabolismo , Prosencéfalo/patologia , Animais , Comportamento Animal , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Feminino , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos Endogâmicos C57BL
7.
Front Neuroanat ; 10: 20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27013983

RESUMO

Spike generation is most effectively controlled by inhibitory inputs that target the perisomatic region of neurons. Despite the critical importance of this functional domain, very little is known about the organization of the GABAergic inputs contacting the perisomatic region of principal cells (PCs) in the basolateral amygdala. Using immunocytochemistry combined with in vitro single-cell labeling we determined the number and sources of GABAergic inputs of PCs at light and electron microscopic levels in mice. We found that the soma and proximal dendrites of PCs were innervated primarily by two neurochemically distinct basket cell types expressing parvalbumin (PVBC) or cholecystokinin and CB1 cannabinoid receptors (CCK/CB1BC). The innervation of the initial segment of PC axons was found to be parceled out by PVBCs and axo-axonic cells (AAC), as the majority of GABAergic inputs onto the region nearest to the soma (between 0 and 10 µm) originated from PVBCs, while the largest portion of the axon initial segment was innervated by AACs. Detailed morphological investigations revealed that the three perisomatic region-targeting interneuron types significantly differed in dendritic and axonal arborization properties. We found that, although individual PVBCs targeted PCs via more terminals than CCK/CB1BCs, similar numbers (15-17) of the two BC types converge onto single PCs, whereas fewer (6-7) AACs innervate the axon initial segment of single PCs. Furthermore, we estimated that a PVBC and a CCK/CB1BC may target 800-900 and 700-800 PCs, respectively, while an AAC can innervate 600-650 PCs. Thus, BCs and AACs innervate ~10 and 20% of PC population, respectively, within their axonal cloud. Our results collectively suggest, that these interneuron types may be differently affiliated within the local amygdalar microcircuits in order to fulfill specific functions in network operation during various brain states.

8.
Neurosci Lett ; 588: 1-6, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25543029

RESUMO

Neuronal chains between the retina and the pineal body were investigated. Transneuronal tracers, retrograde spreading pseudorabies virus (labeled with green fluorescent protein, memGreen-RV) and virus spreading in both ante- and retrograde directions (labeled with red fluorescent protein, Ka-VHS-mCherry-A-RV) were injected into the right eye of vitreous body of intact or bilaterally sympathectomized Wistar male rats. Intact golden hamsters also received memGreen-RV into the eye and Ka-VHS-mCherry-A-RV into the pineal body. Four-five days later the animals were sacrificed. Frozen sections were prepared from the removed structures. In intact rats memGreen-RV resulted in green fluorescent labeling in the trigeminal and the superior cervical ganglia, the lateral horn of the spinal cord, the paraventricular and the suprachiasmatic nuclei, the perifornical region, the ventrolateral medulla, the locus ceruleus, and the raphe nuclei. In sympathectomized rats the labeling was missing from the brainstem but further existed in the hypothalamus. This observation indicates that the hypothalamic labeling is not mediated by the sympathetic system. One labeled neuron in the pineal body was only observed in 2/13 rats. It was independent from the sympathectomy. When the animals received Ka-VHS-mCherry-A-RV the distribution of the labeling was very similar to that of the intact group receiving retrograde virus. In golden hamsters the memGreen-RV labeled structures were seen in similar places as in rats, but virus labeled nerve cell bodies were always seen in the pineal body. Injection of Ka-VHS-mCherry-A-RV into the pineal body of hamsters resulted in labeling of the retina at both sides. It was concluded that the retinopetal neuronal chain in golden hamsters is always present but in rats it is stochastic.


Assuntos
Neurônios/citologia , Glândula Pineal/citologia , Retina/citologia , Animais , Cricetinae , Feminino , Herpesvirus Suídeo 1 , Masculino , Mesocricetus , Neurônios/fisiologia , Glândula Pineal/fisiologia , Ratos Wistar , Retina/fisiologia , Especificidade da Espécie , Simpatectomia
9.
J Neurosci ; 34(49): 16194-206, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25471561

RESUMO

Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of output synapses remains unclear. Moreover, the relationship between the spatial distribution of GABAergic synapses and the action potential initiation site along the AISs is not well defined. Using paired recordings obtained in the mouse basolateral amygdala, we found that AACs powerfully inhibited or delayed the timing of PC spiking by 30 ms, if AAC output preceded PC spiking with no more than 80 ms. By correlating the number of synapses and the probability of spiking, we revealed that larger numbers of presynaptic AAC boutons giving rise to larger postsynaptic responses provided more effective inhibition of PC spiking. At least 10-12 AAC synapses, which could originate from 2-3 AACs on average, were necessary to veto the PC firing under our recording conditions. Furthermore, we determined that the threshold for the action potential generation along PC axons is the lowest between 20 and 40 µm from soma, which axonal segment received the highest density of GABAergic inputs. Single AACs preferentially innervated this narrow portion of the AIS where action potentials were generated with the highest likelihood, regardless of the number of synapses forming a given connection. Our results uncovered a fine organization of AAC innervation maximizing their inhibitory efficacy by strategically positioning synapses along the AISs.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/ultraestrutura , Feminino , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Masculino , Camundongos , Terminações Pré-Sinápticas/fisiologia , Sinapses/ultraestrutura
10.
FASEB J ; 24(7): 2405-16, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20207940

RESUMO

In pathological conditions, F(0)F(1)-ATPase hydrolyzes ATP in an attempt to maintain mitochondrial membrane potential. Using thermodynamic assumptions and computer modeling, we established that mitochondrial membrane potential can be more negative than the reversal potential of the adenine nucleotide translocase (ANT) but more positive than that of the F(0)F(1)-ATPase. Experiments on isolated mitochondria demonstrated that, when the electron transport chain is compromised, the F(0)F(1)-ATPase reverses, and the membrane potential is maintained as long as matrix substrate-level phosphorylation is functional, without a concomitant reversal of the ANT. Consistently, no cytosolic ATP consumption was observed using plasmalemmal K(ATP) channels as cytosolic ATP biosensors in cultured neurons, in which their in situ mitochondria were compromised by respiratory chain inhibitors. This finding was further corroborated by quantitative measurements of mitochondrial membrane potential, oxygen consumption, and extracellular acidification rates, indicating nonreversal of ANT of compromised in situ neuronal and astrocytic mitochondria; and by bioluminescence ATP measurements in COS-7 cells transfected with cytosolic- or nuclear-targeted luciferases and treated with mitochondrial respiratory chain inhibitors in the presence of glycolytic plus mitochondrial vs. only mitochondrial substrates. Our findings imply the possibility of a rescue mechanism that is protecting against cytosolic/nuclear ATP depletion under pathological conditions involving impaired respiration. This mechanism comes into play when mitochondria respire on substrates that support matrix substrate-level phosphorylation.


Assuntos
Potencial da Membrana Mitocondrial , Translocases Mitocondriais de ADP e ATP/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Mitocôndrias/metabolismo , Neurônios , Fosforilação , Coelhos , Ratos , Ratos Sprague-Dawley , Termodinâmica
11.
J Neurosurg ; 108(1): 124-31, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18173321

RESUMO

OBJECTIVES: Ventilatory resuscitation with 100% O2 after severe traumatic brain injury (TBI) raises concerns about the increased production of reactive oxygen species (ROS). The product of peroxynitrite-meditated tyrosine residue nitration, 3-nitrotyrosine (3-NT), is a marker for oxidative damage to proteins. The authors hypothesized that posttraumatic resuscitation with hyperoxia (100% fraction of inspired oxygen [FiO2] concentration) results in increased ROS-induced damage to proteins compared with resuscitation using normoxia (21% FiO2 concentration). METHODS: Male Sprague-Dawley rats underwent controlled cortical impact (CCI) injury and resuscitation with either normoxic or hyperoxic ventilation for 1 hour (5 rats per group). Twenty-four hours after injury, rat hippocampi were evaluated using 3-NT immunostaining. In a second experiment, animals similarly underwent CCI injury and normoxic or hyperoxic ventilation for 1 hour (4 rats per group). One week after injury, neuronal counts were performed after neuronal nuclei immunostaining. RESULTS: The 3-NT staining was significantly increased in the hippocampi of the hyperoxic group. The normoxic group showed a 51.0% reduction of staining in the CA1 region compared with the hyperoxic group and a 50.8% reduction in the CA3 region (p < 0.05, both regions). There was no significant difference in staining between the injured normoxic group and sham-operated control groups. In the delayed analysis of neuronal survival (neuronal counts), there was no significant difference between the hyperoxic and normoxic groups. CONCLUSIONS: In this clinically relevant model of TBI, normoxic resuscitation significantly reduced oxidative damage to proteins compared with hyperoxic resuscitation. Neuronal counts showed no benefit from hyperoxic resuscitation. These findings indicate that hyperoxic ventilation in the early stages after severe TBI may exacerbate oxidative damage to proteins.


Assuntos
Lesões Encefálicas/metabolismo , Lesões Encefálicas/terapia , Hipocampo/metabolismo , Oxigenoterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Tirosina/análogos & derivados , Animais , Modelos Animais de Doenças , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Ressuscitação , Tirosina/metabolismo
12.
J Cereb Blood Flow Metab ; 26(6): 821-35, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16251887

RESUMO

Resuscitation and prolonged ventilation using 100% oxygen after cardiac arrest is standard clinical practice despite evidence from animal models indicating that neurologic outcome is improved using normoxic compared with hyperoxic resuscitation. This study tested the hypothesis that normoxic ventilation during the first hour after cardiac arrest in dogs protects against prelethal oxidative stress to proteins, loss of the critical metabolic enzyme pyruvate dehydrogenase complex (PDHC), and minimizes subsequent neuronal death in the hippocampus. Anesthetized beagles underwent 10 mins ventricular fibrillation cardiac arrest, followed by defibrillation and ventilation with either 21% or 100% O2. At 1 h after resuscitation, the ventilator was adjusted to maintain normal blood gas levels in both groups. Brains were perfusion-fixed at 2 h reperfusion and used for immunohistochemical measurements of hippocampal nitrotyrosine, a product of protein oxidation, and the E1alpha subunit of PDHC. In hyperoxic dogs, PDHC immunostaining diminished by approximately 90% compared with sham-operated dogs, while staining in normoxic animals was not significantly different from nonischemic dogs. Protein nitration in the hippocampal neurons of hyperoxic animals was 2-3 times greater than either sham-operated or normoxic resuscitated animals at 2 h reperfusion. Stereologic quantification of neuronal death at 24 h reperfusion showed a 40% reduction using normoxic compared with hyperoxic resuscitation. These results indicate that postischemic hyperoxic ventilation promotes oxidative stress that exacerbates prelethal loss of pyruvate dehydrogenase and delayed hippocampal neuronal cell death. Moreover, these findings indicate the need for clinical trials comparing the effects of different ventilatory oxygen levels on neurologic outcome after cardiac arrest.


Assuntos
Reanimação Cardiopulmonar/efeitos adversos , Reanimação Cardiopulmonar/métodos , Parada Cardíaca/terapia , Hipocampo/patologia , Estresse Oxidativo , Oxigênio/uso terapêutico , Animais , Modelos Animais de Doenças , Cães , Feminino , Hipocampo/irrigação sanguínea , Hipocampo/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Neurônios/patologia , Oxigenoterapia/métodos , Complexo Piruvato Desidrogenase/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
13.
Clin Neurosurg ; 52: 348-56, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16626092

RESUMO

Resuscitation with 100% ventilatory oxygen is routinely initiated after severe traumatic brain injury (TBI). Despite the objective to improve oxygenation of the injured brain, there are concerns about the increased production of reactive oxygen species (ROS), which can lead to further neuronal damage. 3-nitrotyrosine (3-NT), the product of peroxynitrite-meditated tyrosine residue nitration, has been used as a marker for ROS-induced oxidative damage to proteins. We hypothesized that posttraumatic resuscitation with hyperoxic ventilation with a fraction of inspired oxygen (Fio2, 100%) results in increased ROS-induced damage to proteins compared with resuscitation with normoxic ventilation or room air (Fio2, 21%). Male Sprague-Dawley rats underwent controlled cortical impact (CCI) and were resuscitated with either normoxic or hyperoxic ventilation for 1 hour after injury (n = 5 per group). Sham-operated control groups received 1 hour of normoxic or hyperoxic ventilation without CCI (n = 4-5 per group). Twenty-four hours after injury, rats were perfused with fixative, and hippocampi were evaluated for levels of 3-NT immunostaining. In a second experiment, for a delayed assessment of neuronal survival, another set of rats similarly underwent CCI and normoxic or hyperoxic ventilation for 1 hour (n = 4 per group), and a sham-operated group was used as a control (n = 4). One week after injury, neuronal cell counts and abnormal cell quantification were performed after staining with the neuron-specific NeuN antibody. Quantification of 3-NT staining revealed significantly increased levels in the ipsilateral hippocampus in the hyperoxic CCI group. The normoxic group showed a 51.0% reduction of staining in CA1 when compared with those rats resuscitated with hyperoxia and a 50.8% reduction in CA3 (both P < 0.05). There was no significant difference in staining between the injured normoxic group and the sham-operated groups. In the delayed analysis of neuronal survival, although neuronal counts were reduced in the hippocampus on the injured side in both injured groups, there was no significant difference between hyperoxic and normoxic groups. Similarly, abnormal cell counts were not significantly different between groups.


Assuntos
Distinções e Prêmios , Lesões Encefálicas/terapia , Traumatismos Craniocerebrais/terapia , Traumatismos Faciais/terapia , Hipocampo/metabolismo , Internato e Residência , Nitritos/antagonistas & inibidores , Oxigênio/uso terapêutico , Ácido Peroxinitroso/metabolismo , Proteínas/metabolismo , Pesquisa , Respiração Artificial/métodos , Ressuscitação/métodos , Animais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
14.
J Bioenerg Biomembr ; 36(4): 347-52, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15377870

RESUMO

Mitochondria are both targets and sources of oxidative stress. This dual relationship is particularly evident in experimental paradigms modeling ischemic brain injury. One mitochondrial metabolic enzyme that is particularly sensitive to oxidative inactivation is pyruvate dehydrogenase. This reaction is extremely important in the adult CNS that relies very heavily on carbohydrate metabolism, as it represents the sole bridge between anaerobic and aerobic metabolism. Oxidative injury to this enzyme and to other metabolic enzymes proximal to the electron transport chain may be responsible for the oxidized shift in cellular redox state that is observed during approximately the first hour of cerebral reperfusion. In addition to impairing cerebral energy metabolism, oxidative stress is a potent activator of apoptosis. The mechanisms responsible for this activation are poorly understood but likely involve the expression of p53 and possibly direct effects of reactive oxygen species on mitochondrial membrane proteins and lipids. Mitochondria also normally generate reactive oxygen species and contribute significantly to the elevated net production of these destructive agents during reperfusion. Approaches to inhibiting pathologic mitochondrial generation of reactive oxygen species include mild uncoupling, pharmacologic inhibition of the membrane permeability transition, and simply lowering the concentration of inspired oxygen. Antideath mitochondrial proteins of the Bcl-2 family also confer cellular resistance to oxidative stress, paradoxically through stimulation of mitochondrial free radical generation and secondary upregulation of antioxidant gene expression.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adaptação Fisiológica , Animais , Apoptose , Isquemia Encefálica/prevenção & controle , Cálcio/metabolismo , Hipóxia Celular/efeitos dos fármacos , Respiração Celular , Humanos , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos
15.
Endocrine ; 22(3): 225-37, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14709795

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) immunoreactive cells were demonstrated in the hypothalamic magnocellular nuclei in cats and rats. In cats these immunoreactive cells were stained without any treatment or intervention; however, in rats we had to use the pituitary stalk section to enhance the amount of PACAP and VIP for successful immunostaining. In both species the regions occupied by PACAP and VIP immunoreactive cells partially overlap each other in the paraventricular and supraoptic nuclei. Nevertheless, in either cats or rats PACAP and VIP immunoreactivities do not colocalize in the same cells studied by double labeling immunohistochemistry (IHC) or by the combination of immunohistochemistry and in situ hybridization. As was expected, PACAP and VIP immunoreactive materials were stored in different fibers of the posterior pituitary where the distribution of PACAP and VIP fibers also showed different patterns: PACAP fibers form a dense plexus at the periphery of the posterior lobe, in the vicinity of the intermediate lobe; however, the VIP fibers were evenly distributed mainly in the center of the posterior lobe. In spite of the high sequence homology of PACAP and VIP, the two peptides are synthesized in different subpopulations of hypothalamic neurons. This different distribution correlates well with the different role of the hypothalamic PACAP and VIP in the biologic clock and in the functions of the anterior and posterior pituitary.


Assuntos
Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Neuro-Hipófise/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Gatos , Núcleo Celular/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Masculino , Neuropeptídeos/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Ratos , Ratos Sprague-Dawley
16.
Med Sci Monit ; 8(2): SR5-20, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11862161

RESUMO

The presence of PACAP and VIP was demonstrated in all the four levels of the photoneuroendocrine system (PNES) with the use of immunohistochemistry (IHC), radioimmunoassay (RIA), anterograde and retrograde tracing techniques, and cell immunoblot assay (CIBA). Both peptides play a physiological role in the PNES. According to our results both PACAP and VIP are involved in the regulation of the gonadotrop hormone secretion and their inhibitory role may be mediated through the neuronal chain of the PNES.


Assuntos
Neuropeptídeos/metabolismo , Sistemas Neurossecretores/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Imuno-Histoquímica , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA